Investigation of the Alkaline Earth Phosphates: Synthesis and Crystal Structure of a New Strontium Hydrogen Phosphate Form

Lotfi Ben Taher,* Leila Smiri,*, ${ }^{*}$ Yvon Laligant, \dagger and Vincent Maisonneuve \dagger
* Laboratoire de Chimie Inorganique et Structurale, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisie; and \dagger Laboratoire des Fluorures, UPRES-A CNRS 6010, Faculté des Sciences, Université du Maine, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France

Received February 25, 1999; in revised form February 23, 2000, accepted March 3, 2000

Abstract

The hydrothermal synthesis, initial characterization (EDX analysis, IR, X-ray powder pattern), and X-ray single-crystal structure are reported for a new form of strontium hydrogen phosphate $\left(\gamma-\mathrm{SrHPO}_{4}\right)$. The cell is orthorhombic, space group Pbca (No. 61) with $a=8.131$ (3) $\AA, b=9.258(5) \AA, c=18.084$ (7) $\AA, V=1361.31(2) \AA^{3}$, and $Z=16$. The structure was determined from 1272 observed reflections to a final R value of 0.039 . The atomic arrangement consists of two kinds of anionic layers ($\mathbf{P}(1)$ and $P(2)$) lying parallel to (001), formed by closed dimers and infinite chains of \mathbf{H}-bonded $\mathbf{H P O}_{4}^{2-}$ groups, respectively. These sheets are linked to each other via $\mathbf{S r}^{2+}$ cations. Comparison to the crystal structure of $\mathrm{CaBa}\left(\mathrm{HPO}_{4}\right)_{2}$ is also given, the two compounds exhibiting the same arrangement. © 2000 Academic Press

Key Words: hydrothermal synthesis; initial characterization; crystal structure; strontium hydrogen phosphate; hydrogen-bond scheme.

INTRODUCTION

The chemical literature dealing with strontium hydrogen phosphate $\left(\mathrm{SrHPO}_{4}\right)$ has been well known for a long time (1-5). Mooney et al. (5) mentioned the existence of two allotropic varieties: the low-temperature form $\left(\beta-\mathrm{SrHPO}_{4}\right)$ isomorphous with the orthorhombic BaHPO_{4} and the high-temperature form $\left(\alpha-\mathrm{SrHPO}_{4}\right)$ isostructural to the triclinic CaHPO 4 .

Later, Boudjada et al. (6) reported the preparation, the X-ray powder pattern, and the X-ray single crystal structure of $\alpha-\mathrm{SrHPO}_{4}$.

In this paper, we report the synthesis, the structure, and some properties of a new orthorhombic form of SrHPO_{4} $\left(\gamma\right.$ - $\left.\mathrm{SrHPO}_{4}\right)$. The relationships to the IR vibrational modes and crystal structures of other phosphates and sulfates are given.

[^0]
EXPERIMENTAL

A. Synthesis

Numerous colorless, hexagonal-shaped crystals of γ SrHPO 4 were isolated during our systematic investigation of the system $\mathrm{Li}-\mathrm{Sr}-\mathrm{P}-\mathrm{O}$. They were prepared from a mixture comprising $\mathrm{Li}_{2} \mathrm{CO}_{3}(\geq 99.5 \%)$, SrCO_{3} ($\geq 98 \%$), $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%)$, and distilled water in molar ratio $\mathrm{Li} / \mathrm{Sr} / \mathrm{P} / \mathrm{H}_{2} \mathrm{O}=1 / 1 / 3 / 190$. The reactants were introduced in a Teflon-lined Parr hydrothermal bomb, with a fill factor of approximately 50%. The bomb was heated at $180^{\circ} \mathrm{C}$ under autogeneous pressure for 6 days, and then slowly cooled to room temperature over 24 hours. The bomb contents were recovered by vacuum filtration and drying in air. Repeated attempts to prepare $\gamma-\mathrm{SrHPO}_{4}$ hydrothermally from $\mathrm{SrCO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$, and $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{Sr} / \mathrm{P} / \mathrm{H}_{2} \mathrm{O}=1 / 1.9 / 60, T=\right.$ $140^{\circ} \mathrm{C}, 2$ days) allowed us to obtain a white microcrystalline powder for this phase.

B. Initial Characterization

EDX analysis was performed with a JEOL-2010 electron microscope (TEM) operating at 200 kV and equipped with a KEVEX Energy-Dispersive X-ray analyzer. Samples were deposited on a lacey carbon film.

Infrared data were collected in the $4000-370 \mathrm{~cm}^{-1}$ range with a Perkin Elmer FT-IR 1000 spectrophotometer using KBr pellet technique.

X-ray powder data were registered at room temperature using a Philips PW 3710 with $\mathrm{CuK} \alpha$ radiation $(\lambda=$ $1.5418 \AA$). A preliminary single-crystal investigation, using the Weissenberg technique, indicated an orthorhombic symmetry and space group Pbca (No. 61).

C. Structure Determination

A suitable single crystal, with the approximate dimensions $133 \times 95 \times 38 \mu \mathrm{~m}$ was selected for structure determination. Data collection was made on an AED2 Siemens-Stoe
four-circle diffractometer. The unit-cell parameters were determined by a least-squares fit of 30 reflections with 2θ ranging from 24.3 to 30.5°. The intensities were corrected for Lorentz-polarization effects. An absorption correction has been also applied (7). Atomic scattering factors were taken from the International Tables for X-ray crystallography (8). Initial heavy-atom positions (Sr, P) were located by using SHELXS-97 (9), and the O atom positions were deduced from Fourier difference maps during the refinement with the program SHELXL-97 (10). A final difference synthesis clearly revealed the hydrogen-atom coordinates, and geometrical constraints [$d_{\mathrm{O}-\mathrm{H}}=0.9 \pm 0.05 \AA$] were applied to stabilize the least-squares refinement of the H positions. The final cycle of refinement including atomic coordinates, anisotropic displacement parameters for nonhydrogen atoms, and isotropic displacement parameters for the H atoms converged to the reliability factors $R_{1} / w R_{2}=0.039 / 0.108$. Crystallographic data and some details of the structure refinement for $\gamma-\mathrm{SrHPO}_{4}$ are summarized in Table 1.

TABLE 1
Summary of Crystal Data, Intensity Measurements, and Refinement Parameters for γ-SrHPO 4

Crystal data			
Formula	γ-SrHPO 4		
Formula weight ($\mathrm{g} \mathrm{mol}^{-1}$)	183.59		
Crystal dimensions	$133 \times 95 \times 38 \mu \mathrm{~m}$		
Habit, color	Hexagonal, colorless		
Crystal system	Orthorhombic		
Space group	Pbca (No. 61)		
Cell dimensions (\AA)	$\begin{aligned} & a=8.131(3), \\ & b=9.258(5), \\ & c=18.084(7) \end{aligned}$		
$V\left(\AA^{3}\right), Z$	1361.31(2), 16		
$\rho_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	3.583		
Absorption coefficient (mm^{-3})	$\mu(\mathrm{Mo} K \alpha)=16.15$		
Intensity measurements			
Temperature (K)	293(2)		
Radiation, $\lambda(\AA)$	MoK $\alpha, 0.71069$		
Scan mode (${ }^{\circ}$)	$\omega-2 \theta$ in 35 steps of $\Delta \omega=0.035^{\circ}$		
2θ max (${ }^{\circ}$)	69.78		
Standard reflections	40 0-0 8 2-4 40		
$h k l$ limits	$\begin{aligned} & 0 \leq h \leq 13, \\ & 0 \leq k \leq 14, \\ & 0 \leq l \leq 29 \end{aligned}$		
Independent reflections	2940		
Observed reflections [$I>6 \sigma(I)$]	1272		
Absorption correction	SHELXA (7)		
Min./Max. transmission	0.182/0.653		
Structure refinement			
Parameters refined	118		
Reliability factors	$R_{1}{ }^{a}=0.039, w R_{2}{ }^{a}=0.108$		
$\Delta \rho_{\text {min/max }}\left(\mathrm{e} \AA^{-3}\right)$	-0.97/1.01		
${ }^{a} R$ values are defined as follows: $R_{1}=\sum\left\\|\mathrm{Fo}\left\|-\left\|\mathrm{Fc} \\| / \sum\right\| \mathrm{Fo}\right\|\right.$ and $w R_{2}=\left[\sum w\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2} / \sum w\left(\mathrm{Fo}^{2}\right)^{2}\right]^{1 / 2} \quad$ where $\quad w^{-1}=\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+\right.$ $\left.(0.0300 P)^{2}+0.00 P\right]$ and $P=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3$.			

RESULTS AND DISCUSSION

A. Initial Characterization

EDX analysis of several crystals established the presence of Sr, P, and O . The obtained compositions are in good agreement with the stoichiometric formula, SrHPO_{4}.
The IR spectrum of $\gamma-\mathrm{SrHPO}_{4}$ is reported in Fig. 1. Previous workers $(11,12)$ have found that the vibrational bands of inorganic phosphates are generally not very sensitive to the cations in the structure, which tend just to shift the band frequencies slightly rather than to create new bands. Thus, the IR spectrum is dominated by the HPO_{4}^{2-} modes. The $2800-1700 \mathrm{~cm}^{-1}$ range corresponds to the OH modes of HPO_{4}^{2-} groups characterized by three broad bands of ABC type. Similar bands have been observed in strong hydrogen bonded crystals, such as $\mathrm{CaBa}\left(\mathrm{HPO}_{4}\right)_{2}$ (13) and PbHPO_{4} (14). The presence of bands in the region $1400-1200 \mathrm{~cm}^{-1}$ is characteristic of hydrogen monophosphate groups (12). They are assigned to $\delta_{\text {P-О-н }}$ in plane bending modes, two bands 1298 and $1267 \mathrm{~cm}^{-1}$ are observed for these modes. In the range $1200-800 \mathrm{~cm}^{-1}$ appear the PO_{4}^{3-} stretching modes: the high-frequency bands ($1170,1146,1137 \mathrm{~cm}^{-1}$) are assigned to the asymmetric $\left(v_{3}\right)$ mode, whereas the symmetric stretching mode of $\mathrm{P}-\mathrm{O}(\mathrm{H})$ is observed for the low-frequency $887 \mathrm{~cm}^{-1}$. The remaining bands (1070, 1016, $929,915 \mathrm{~cm}^{-1}$) are attributed to the symmetric (v_{1}) mode. The bands in the range $600-370 \mathrm{~cm}^{-1}$ are due to PO_{4}^{3-} bending modes. According to previous data (15), the two well-defined subdivisions of 600-520 and $450-370 \mathrm{~cm}^{-1}$ arise from the antisymmetric $\left(v_{4}\right)$ and symmetric (v_{2}) modes, respectively.
The diffraction pattern of the title compound, which differs from those of $\alpha-\mathrm{SrHPO}_{4}$ (JCPDS Card 33-1335) and β-SrHPO ${ }_{4}$ (JCPDS Card 12-368) forms, was indexed using the orthorhombic cell parameters determined from the single-crystal experiment. Table 2 lists the observed and calculated interplanar distances and the intensities calculated on the basis of a LAZY-PULVERIX (16) simulation of the structure of $\gamma-\mathrm{SrHPO}_{4}$.

B. Description of the Structure and Discussion

General features. Final atomic parameters for γ SrHPO_{4} are reported in Tables 3 and 4, with selected interatomic distances and angles data given in Table 5. As shown from the projection of the structure onto (010) plane (Fig. 2), the atomic arrangement consists of a succession along [001] of two kinds of alternating anionic planes denoted as $\mathrm{P}(1)$ and $\mathrm{P}(2)$. These sheets located at approximately $z=(0,1 / 2)$ and $z=(1 / 4,3 / 4)$ are formed by $\mathrm{HP}(1) \mathrm{O}_{4}^{2-}(\mathrm{P}(1))$ and $\mathrm{HP}(2) \mathrm{O}_{4}^{2-}(\mathrm{P}(2))$ groups, respectively. Along the c axis, two anionic planes of the same type are related by a c glide. Interleaved Sr^{2+} cations ensure the cohesion of the structure.

FIG. 1. Infrared spectrum of $\gamma-\mathrm{SrHPO}_{4}$.
Sr^{2+} environment. The two independent Sr^{2+} ions are both 9 -coordinated by oxygen atom neighbors. All oxygen atoms are involved in $\mathrm{Sr}-\mathrm{O}$ bonds. $\mathrm{The} \mathrm{SrO}_{9}$ polyhedra are distorted as shown by the $\mathrm{Sr}-\mathrm{O}$ bond lengths (Table 5). The average $\langle\mathrm{Sr}-\mathrm{O}\rangle$ distances $(2.703(6)$ and $2.660(6) \AA$) are quite similar to those in $\mathrm{SrNaPO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (17), in which Sr^{2+} has
also a ninefold coordination, whereas these values are significantly larger than those in the SrO_{8} square antiprisms of $\alpha-\mathrm{SrHPO}_{4}$ (7). Furthermore, the coordination choice is in agreement with results of bond valence sums (18) of 1.94 for $\mathrm{Sr}(1)$ and 2.14 for $\mathrm{Sr}(2)$. Each $\mathrm{Sr}(1) \mathrm{O}_{9}$ polyhedron shares one triangular face $[\mathrm{O}(2), \mathrm{O}(3), \mathrm{O}(7)]$ and two edges $(\mathrm{O}(3)-\mathrm{O}(5)$,

FIG. 2. (a) [010] view of the atomic arrangement of $\gamma-\mathrm{SrHPO}_{4}$. (b) [100] view of the atomic arrangement of $\mathrm{CaBa}(\mathrm{HPO})_{2} . \mathrm{H}$ atoms are not shown.

TABLE 2
X-ray Powder Data for $\boldsymbol{\gamma}$-SrHPO $\mathbf{4}_{4}$

h	k	l	$d_{\text {obs. }}(\AA)$	$d_{\text {cal. }}(\AA)$	I / I_{0}
1	1	1	5.76	5.78	12
0	0	4	4.50	4.52	33
0	2	2	4.11	4.12	5
1	2	1	3.92	3.92	12
2	1	0	3.71	3.72	100
2	0	2	3.11	3.70	38
1	2	3	3.33	3.34	76
0	2	4	3.22	3.23	86
1	1	5	3.10	3.11	57
1	2	4	3.00	3.05	1
2	2	2	288	2.89	24
2	1	4	2.88	2.87	90
2	1	4	2.86	2.87	90
1	3	1	2.841	2.849	27
1	2	5	2.683	2.689	32
3	1	1	2.570	2.574	12
2	3	0	2.450	2.458	15
3	1	3	2.382	2.388	8
3	2	1	2315	2.319	187
0	4	0	2.315	2.314	7
2	3	3	2.279	2.276	1
0	2	7	2.256	2.255	32
3	1	4	2.250	2.254	45.5
1	4	1	2.204	2.209	31
2	3	4	2.155	2.159	9
3	1	5	2.109	2.111	7
3	3	1	2.027	2.023	17
3	3	3	1.929	1.929	7
1	4	5	1.893	1.895	14
0	0	10	1.805	1.808	4
3	3	5	1.772	1.774	23
3	2	7	1.730	1.733	7
4	2	4	1.719	1.721	6
3	4	3	1.687	1.689	12
3	3	7		1.599	6
5	1	1	1.596	1.595	1
3	4	5	1.580	1.582	13
1	2	11	1520	1.521	2
0	6	2	1.520	1.521	1
0	0	12	1.509	1.507	3
4	4	2	1.505	1.506	1
5	2	3	1.488	1.486	1
5	2	3	1.485	1.486	1
3	5	3	1.485	1.482	5
4	2	8	1.435	1.436	9
5	3	1	1.435	1.434	2
1	5	6	1396	1.398	3
2	1	12	1.396	1.396	16

$\mathrm{O}(2)-\mathrm{O}(8))$ with three $\mathrm{Sr}(2) \mathrm{O}_{9}$ polyhedra, and vice versa, resulting in a two-dimensional framework lying parallel to the $a b$ plane (Fig. 3a). In the [001] direction, the $\operatorname{Sr}(1)-\operatorname{Sr}(2)$ connectivity is via the $\mathrm{O}(1)-\mathrm{O}(4)$ edges and the $\mathrm{O}(6)$ corners, forming infinite slightly corrugated ribbons (Fig. 3b), completing the three-dimensional network of the strontium polyhedra.

TABLE 3
Atomic Coordinates and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{4}\right)$ for $\gamma-\mathrm{SrHPO}_{4}$

Atom	x	y	z	$U_{\mathrm{eq}}{ }^{a}$
$\mathrm{Sr}(1)$	$0.1244(1)$	$0.3213(1)$	$0.12536(3)$	$104(2)$
$\mathrm{Sr}(2)$	$0.86913(9)$	$0.6821(1)$	$0.11737(4)$	$101(2)$
$\mathrm{P}(1)$	$0.2510(2)$	$0.0770(1)$	$0.0037(1)$	$9(3)$
$\mathrm{P}(2)$	$0.5227(2)$	$0.4790(2)$	$0.2057(1)$	$107(9)$
$\mathrm{O}(1)$	$0.0903(5)$	$0.1632(5)$	$0.0042(3)$	$144(1)$
$\mathrm{O}(2)$	$0.3450(7)$	$0.1013(7)$	$0.0754(3)$	$143(1)$
$\mathrm{O}(3)$	$0.3472(7)$	$0.1074(7)$	$-0.0663(3)$	$115(9)$
$\mathrm{O}(4)$	$0.2064(6)$	$-0.0904(5)$	$0.0010(4)$	$5(4)$
$\mathrm{O}(5)$	$0.5793(7)$	$0.6203(6)$	$0.1718(3)$	$158(12)$
$\mathrm{O}(6)$	$0.6754(7)$	$0.3742(6)$	$0.2213(3)$	$141(11)$
$\mathrm{O}(7)$	$0.4484(6)$	$0.5019(6)$	$0.2828(3)$	$140(11)$
$\mathrm{O}(8)$	$0.4140(7)$	$0.3877(6)$	$0.1571(3)$	$150(12)$
$\mathrm{H}(4)$	$0.097(6)$	$-0.10(1)$	$0.009(7)$	$396(312)^{b}$
$\mathrm{H}(6)$	$0.76(8)$	$0.42(1)$	$0.215(7)$	$799(477)^{b}$

${ }^{a} U_{\text {eq }}=1 / 3 \sum_{i} \sum_{j} U_{i j} \mathbf{a}_{i}^{*} \mathbf{a}_{j}^{*} \mathbf{a}_{i} \mathbf{a}_{j}$.
${ }^{b} U_{\text {iso }}$.

Anionic sheets. The mean $\mathrm{P}-\mathrm{O}$ and $\mathrm{P}-\mathrm{O}(\mathrm{H})$ bond lengths in the hydrogen phosphate groups compare well with the values 1.522 and $1.592 \AA$, respectively, reported by Baur in his survey of monophosphate groups (19). Both $P(1)$ and $\mathrm{P}(2)$ units are involved in strong hydrogen bonds (20) (Table 5). The overall hydrogen-bond scheme in γ-SrHPO 4 is illustrated in Fig. 4. Every hydrogen phosphate tetrahedron can act both as a hydrogen acceptor and as a donor, and in such cases it has to be denoted as $(\mathrm{D}+\mathrm{A})$. Within the planes at $z \sim(0$ and $1 / 2)$ which contain the $\mathrm{P}(1)$ tetrahedra, closed dimers located on inversion symmetry are formed

TABLE 4
Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{4}\right)$ for γ-SrHPO 4

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{Sr}(1)$	$48(3)$	$108(4)$	$156(3)$	$-5(3)$	$-7(2)$	$-5(4)$
$\mathrm{Sr}(2)$	$57(3)$	$92(3)$	$153(3)$	$3(3)$	$0(3)$	$4(4)$
$\mathrm{P}(1)$	$42(6)$	$78(6)$	$147(7)$	$13(9)$	$16(11)$	$-1(5)$
$\mathrm{P}(2)$	$33(7)$	$77(8)$	$147(7)$	$-3(7)$	$2(7)$	$2(7)$
$\mathrm{O}(1)$	$49(18)$	$52(19)$	$221(22)$	$-29(25)$	$31(22)$	$11(15)$
$\mathrm{O}(2)$	$99(28)$	$154(32)$	$179(24)$	$41(23)$	$-84(22)$	$-37(25)$
$\mathrm{O}(3)$	$85(27)$	$162(31)$	$183(24)$	$19(23)$	$39(22)$	$-13(25)$
$\mathrm{O}(4)$	$52(20)$	$114(20)$	$180(21)$	$-49(27)$	$-18(24)$	$-4(16)$
$\mathrm{O}(5)$	$107(29)$	$123(28)$	$246(28)$	$102(24)$	$-24(23)$	$-5(23)$
$\mathrm{O}(6)$	$70(24)$	$109(25)$	$247(27)$	$2(23)$	$-47(22)$	$40(20)$
$\mathrm{O}(7)$	$100(22)$	$144(25)$	$178(24)$	$-43(23)$	$101(20)$	$-7(22)$
$\mathrm{O}(8)$	$186(30)$	$167(24)$	$-26(24)$	$-39(21)$	$-22(24)$	$150(12)$

[^1]TABLE 5
Selected Interatomic Distances (\AA) and Angles (${ }^{\circ}$) for $\gamma-$ SrHPO $_{4}$

$\mathrm{P}(1)$	$\mathrm{P}(1) \mathrm{O} \mathrm{O}_{4}$ tetrahedron $\langle\mathrm{P}-\mathrm{O}\rangle=1.540(6) \AA$				
	$\mathrm{O}(1)$		$\mathrm{O}(2)$	$\mathrm{O}(3)$	$\mathrm{O}(4)$
$\mathrm{O}(1)$	1.530(5)		2.505(7)	2.501(7)	$2.532(6)$
$\mathrm{O}(2)$	110.2(3)		1.522(6)	2.564(7)	2.496(7)
$\mathrm{O}(3)$	110.4(3)		115.1(3)	1.515(6)	$2.479(8)$
$\mathrm{O}(4)$	108.2(2)		106.9(3)	105.8(3)	1.592(5)
D-H		D-H (\AA)) $\mathrm{H} \cdots \mathrm{A}(\AA)$	D ...A (\AA)	D-H . . $\mathrm{A}\left({ }^{\circ}\right)$
$\mathrm{O}(4)$	$\mathrm{O}(1)^{(\mathrm{i})}$	0.90(5)	1.65(6)	$2.508(6)$	157(11)

$\mathrm{P}(2)$	$\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedron		$\langle\mathrm{P}-\mathrm{O}\rangle=1.539(6) \AA$	
	$\mathrm{O}(5)$	$\mathrm{O}(6)$	$\mathrm{O}(7)$	$\mathrm{O}(8)$
$\mathrm{O}(5)$	1.516(6)	2.569(8)	2.523(8)	2.553(7)
$\mathrm{O}(6)$	111.0(3)	$\underline{1.600(6)}$	2.458(7)	$2.425(8)$
$\mathrm{O}(7)$	111.6(3)	103.2(3)	1.533(6)	2.523(8)
$\mathrm{O}(8)$	105.9(3)	102.5(3)	112.1(3)	1.507(6)

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}(\AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
$\mathrm{O}(6)-\mathrm{H}(6) \cdots \mathrm{O}(7)^{(\mathrm{ii})}$	$0.89(5)$	$1.63(6)$	$2.516(8)$	$169(13)$

	$\mathrm{Sr}(1) \mathrm{O}_{9}$ polyhedron	$\langle\mathrm{Sr}(1)-\mathrm{O}\rangle=2.703(6) \AA$	
$\mathrm{Sr}(1)-\mathrm{O}(1)$	2.648 (6)	$\mathrm{Sr}(1)-\mathrm{O}(5)^{(v)}$	2.629(6)
$\mathrm{Sr}(1)-\mathrm{O}(2)$	2.859(6)	$\mathrm{Sr}(1)-\mathrm{O}(6)^{\text {(vi) }}$	2.846 (6)
$\mathrm{Sr}(1)-\mathrm{O}(2)^{\text {(iii) }}$	2.756(6)	$\mathrm{Sr}(1)-\mathrm{O}(7)^{(\mathrm{vij}}$	$2.756(6)$
$\mathrm{Sr}(1)-\mathrm{O}(3)^{\text {(iv) }}$	$2.579(6)$	$\mathrm{Sr}(1)-\mathrm{O}(8)$	2.500 (6)
$\mathrm{Sr}(1)-\mathrm{O}(4)^{\text {(ii) }}$		2.758(6)	
	$\mathrm{Sr}(2) \mathrm{O}_{9}$ polyhedron	$\langle\mathrm{Sr}(2)-\mathrm{O}\rangle=2.660(6) \AA$	
$\mathrm{Sr}(2)-\mathrm{O}(1)^{\text {(vii) }}$	$2.644(6)$	$\mathrm{Sr}(2)-\mathrm{O}(5)$	2.617(6)
$\mathrm{Sr}(2)-\mathrm{O}(2)^{(\text {(vii) }}$	$2.556(6)$	$\mathrm{Sr}(2)-\mathrm{O}(6)^{\text {(viii) }}$	2.613 (6)
$\mathrm{Sr}(2)-\mathrm{O}(3)^{\text {(iv) }}$	2.841(6)	$\mathrm{Sr}(2)-\mathrm{O}(7)^{(\mathrm{ii)}}$	2.541(6)
$\mathrm{Sr}(2)-\mathrm{O}(3)^{\text {(vii) }}$	2.776(6)	$\mathrm{Sr}(2)-\mathrm{O}(8)^{\text {(viii) }}$	2.691(6)
$\mathrm{Sr}(2)-\mathrm{O}(4)^{\text {(ix) }}$		2.657(6)	

Note. Symmetry codes: (i) $-x,-y,-z$; (ii) $x+0.5, y,-z+0.5$; (iii) $-x+0.5, y+0.5, z$; (iv) $x-0.5,-y+0.5,-z ;$ (v) $-x+0.5, y-0.5, z$; (vi) $x-0.5, y,-z+0.5$; (vii) $-x+1,-y+1,-z$; (viii) $-x+1.5$, $y+0.5, z ;$ (ix) $x+0.5,-y+0.5,-z$.
from two H bridges $\mathrm{O}(4)-\mathrm{H}(4) \cdots \mathrm{O}(1)$ with $\mathrm{O} \cdots \mathrm{O}$ distance of $2.508(6) \AA$. Whereas for the planes at $z \sim(1 / 4$ and $3 / 4)$ containing the $\mathrm{P}(2)$ tetrahedra, the phosphate entities are
connected through the hydrogen bonds $\mathrm{O}(6)-\mathrm{H}(6) \cdots \mathrm{O}(7)$ with $\mathrm{O} \cdots \mathrm{O}$ distance of $2.516(8) \AA$, giving rise to infinite zig-zag $\left(\mathrm{HPO}_{4}^{2-}\right)_{n}$ chains running parallel to [100]. Besides, there's no H-bond connection between the two types of anionic sheets.

Comparison to related compounds. As suggested by Figs. 2 a and 2 b , the atomic arrangement of the title compound shows close similarity to that observed in $\mathrm{CaBa}\left(\mathrm{HPO}_{4}\right)_{2}$ salt (13). Indeed, in the related compound, we note the same succession of two types of HPO_{4}^{2-}, sheets which alternate with $\mathrm{Ba}^{2+} / \mathrm{Ca}^{2+}$ planes and an H -bonding system similar, where closed dimers are present along with infinite chains. Besides, we have observed a lowering of the lattice symmetry from orthorhombic to monoclinic with a change in the unit cell parameters ($a_{\mathrm{o}} \sim b_{\mathrm{m}}, b_{\mathrm{o}} \sim a_{\mathrm{m}}, c_{\mathrm{o}} \sim 2 c_{\mathrm{m}}$) (Table 6).

The monoclinic deformation of the unit cell of $\mathrm{CaBa}\left(\mathrm{HPO}_{4}\right)_{2}$ can be directly related to the nature of the cation coordinations; one kind of ion, $\left(2 \mathrm{Sr}^{2+}\right)$ with average $\langle\mathrm{Sr}-\mathrm{O}\rangle$ distances (2.703(6) and $2.660(6) \AA$), is replaced by $\left(\mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}\right)$ ions with $\langle\mathrm{Ba}-\mathrm{O}\rangle=2.846(5) \AA$ and $\langle\mathrm{Ca}-\mathrm{O}\rangle=2.462(5) \AA$ in BaO_{9} and CaO_{7} polyhedra, respectively. The lattice distortion is coupled with small rotations of the HPO_{4} tetrahedra along the a_{m} axis.

The slight increase of a and c lengths, from $\gamma-\mathrm{SrHPO}_{4}$ to $\mathrm{CaBa}\left(\mathrm{HPO}_{4}\right)_{2}$, is caused by the radius change of the ions, where two Sr^{2+} cations $\left(r_{\mathrm{IX}}\left(\mathrm{Sr}^{2+}\right)=1.31 \AA\right)$ are replaced by a relatively small $\mathrm{Ca}^{2+}\left(r_{\mathrm{VII}}\left(\mathrm{Ca}^{2+}\right)=1.07 \AA\right)$ and large $\mathrm{Ba}^{2+}\left(r_{\mathrm{IX}}\left(\mathrm{Ba}^{2+}\right)=1.47 \AA\right)$ cations (21). The doubling of the c parameter in $\gamma-\mathrm{SrHPO}_{4}$ is due to the orientation of the tetrahedra in two successive layers either of $\mathrm{P}(1)$ type or of $P(2)$ type.
Moreover, one can notice a decrease of the b parameter because the chains $\mathrm{P}(2)$ are rather strained in the related compound. The distance between $\mathrm{P}(2)$ atoms along the chains in $\gamma-\mathrm{SrHPO}_{4}$ is $4.369(1) \AA$ as compared to $4.280(5) \AA$ for $\mathrm{CaBa}\left(\mathrm{HPO}_{4}\right)_{2}$. This decrease in the $\mathrm{P}-\mathrm{P}$ distance is accompanied by a decrease in the $\mathrm{P}(2)-\mathrm{P}(2)-\mathrm{P}(2)$ angle $\left(137.06(1)^{\circ}\right.$ to $\left.135.77(1)^{\circ}\right)$ and a reduction in the third lattice

TABLE 6
Comparison of Selected Structural Characteristics of $\gamma-\mathrm{SrHPO}_{4}$ (I) and $\mathrm{CaBa}\left(\mathrm{HPO}_{4}\right)_{2}$ (II)

	Crystal data			$\mathrm{HP}(2) \mathrm{O}_{4}$ chains		
	Lattice parameters (A°)	Volume (\AA^{3}), Z	$V / \mathrm{Z}\left(\AA^{3}\right)$	$\mathrm{O} \cdots \mathrm{O}(\AA)$	$\mathrm{P}(2)-\mathrm{P}(2)(\AA)$	$\mathrm{P}(2)-\mathrm{P}(2)-\mathrm{P}(2){ }^{(}{ }^{\circ}$
I	$\begin{aligned} & a_{\mathrm{o}}=8.131(3) \\ & b_{\mathrm{o}}=9.258(5) \end{aligned}$	1361.31(2), 16	85.08	2.516(8)	4.369(1)	137.06(1)
II	$\begin{aligned} c_{\mathrm{o}} & =18.084(7) \\ a_{\mathrm{m}} & =9.470(2) \\ b_{\mathrm{m}} & =7.930(1) \\ c_{\mathrm{m}} & =9.865(1) \\ \beta & =115.78(1) \end{aligned}$	667.2(1), 4	2×83.4	2.466(7)	4.280(5)	135.77(1)

FIG. 3. The SrO_{9} polyhedral connectivity into layers parallel to (001) (a) and ribbons along [001] (b). $\mathrm{Sr}(1)$ and $\operatorname{Sr}(2)$ environment are represented by light and medium gray polyhedra, respectively.

FIG. 4. Hydrogen bond scheme in γ - SrHPO_{4}. Small open circles represent H atoms. H bonds are indicated by dotted lines.
constant, from $8.131(3) \AA$ (in γ - SrHPO_{4}) to $7.930(1) \AA$ (in $\left.\mathrm{CaBa}\left(\mathrm{HPO}_{4}\right)_{2}\right)$.

As well as for both the hydrogen phosphate structures with $\mathrm{H} / \mathrm{PO}_{4}^{3}=1$, Kemnitz et al. (22) have found the same connectivity (dimers or/and infinite chains) in some hydrogen ulfate structures, e.g., $\mathrm{KHSO}_{4}, \mathrm{LiHSO}_{4}$, and β NaHSO_{4}, where the $\mathrm{H} / \mathrm{SO}_{4}^{2-}$ ratio is also 1 . Moreover, in their investigation of $\mathrm{Cs}_{5}\left(\mathrm{HSO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$, Sossina et al. (23), have also observed the same behavior for the sulfate and phosphate groups.

CONCLUSION

We have described the synthesis, (EDX analysis, IR, Xray powder pattern) characterization, and single-crystal structure of a new strontium hydrogen phosphate form. $\gamma-\mathrm{SrHPO}_{4}$, like the related $\mathrm{CaBa}\left(\mathrm{HPO}_{4}\right)_{2}(13)$, has an interesting three-dimensional network consisting of phosphate sheets linked via the alkaline earth cations. Further interaction linkages are provided by strong hydrogen bonds which features are defined by the $\mathrm{H} / \mathrm{PO}_{4}^{3-}$ ratio as has been found in some hydrogen sulfate structures (22). Consequently, the structural features invite us to investigate the mixed alkaline
earth of strontium-barium and strontium-calcium phosphates or/and sulfates in order to examine the effect and the influence of the cationic and anionic substitution over crystalline symmetry and physical properties.

ACKNOWLEDGMENT

We are very grateful to Pr. M. Leblanc for access to "Laboratoire des Fluorures, UPRES-A CNRS 6010, Faculté des Sciences, Université du Maine, LE MANS, France."

REFERENCES

1. H. V. Tarte and J. R. Lorah, J. Am. Chem. Soc. 51, 1091 (1929).
2. R. Klement, Z. Anorg. Allgem. Chem. 242, 215 (1939).
3. J. W. Mellor, "A Comprehensive Treatise on Inorganic and Theoretical Chemistry," Vol. III, p. 864, Longmans, Green, New York, 1941.
4. L. E. Holt, Jr., J. A. Pierce, and C. N. Kajdi, J. Colloid Sci. 9, 509 (1954).
5. R. W. Mooney, M. A. Aia, C. W. W. Hoffman, and R. C. Ropp, J. Am. Chem. Soc. 81, 826 (1959).
6. P. A. Boudjada, R. Masse, and J. C. Guitel, Acta Crystallogr. B 34, 2692 (1978).
7. G. M. Sheldrick (anon) SHELXL-97, Univ. of Goettingen, Germany, 1998.
8. "International Tables for X-ray Crystallography," Vol. C, Kluwer, Dordrecht, 1992.
9. G. M. Sheldrick, "SHELXS-97: A Program for Automatic Solution of Crystal Structure," Univ. of Goettingen, Germany, 1997.
10. G. M. Sheldrick, "SHELXL-97: A Program for Crystal Structure Refinement," Univ. of Goettingen, Germany, 1997.
11. B. Bridge and N. D. Patel, J. Non-Cryst. Solids, 91, 27 (1987).
12. D. E. C. Corbridge and A. W. Lowe, J. Chem. Soc. 1941, 493, Part II, 4555 (1954).
13. L. B. Taher, S. Chabchoub, and L. Smiri-Dogguy, J. Solid State Sci. 1, 15 (1999).
14. B. K. Choi, M. N. Lee, and J. J. Kim, J. Raman Spectrosc. 20, 11 (1989).
15. J. R. Lehr, E. H. Brown, and A. W. Frazier, "Crystallographic Properties of Fertilizer Compounds." Tennessee Valley Authority, 1967. Chem. Eng. Bull., No. 6.
16. K. Yvon, W. Jeitscho, and E. Parthe, J. Appl. Crystallogr. 10, 73 (1977).
17. B. S. Takagi, M. Mathew, and W. E. Brown, Acta Crystallogr. B 38, 1408 (1982).
18. N. E. Brese and O'Keeffe, Acta Crystallogr. B 47, 192 (1991).
19. W. H. Baur, Acta Crystallogr. B 30, 1195 (1974).
20. I. D. Brown, Acta Crystallogr. A 32, 24 (1976).
21. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
22. E. Kemnitz, C. Werner, and S. I. Torjanov, Eur. J. Solid State Inorg. Chem. 33, Part II, 581 (1996).
23. M. H. Sossina and M. C. Pamela, J. Solid State Chem. 140, 251 (1998).

[^0]: ${ }^{1}$ To whom correspondence should be addressed. Fax: 2162590566. E-mail: leila.smiri@fsb.rnu.tn.

[^1]: Note. The form of the anisotropic thermal parameters is $\exp \left[-2 \pi^{2}\left(h^{2}\right.\right.$ $\mathbf{a}^{* 2} U_{11}+k^{2} \mathbf{b}^{* 2} U_{22}+l^{2} \mathbf{c}^{* 2} U_{33}+2 h k \mathbf{a}^{*} \mathbf{b}^{*} U_{12}+2 h l \mathbf{a}^{*} \mathbf{c}^{*} U_{13}+2 k l \mathbf{b}^{*} \mathbf{c}^{*}$ $\left.\left.U_{23}\right)\right]$.

